Synthetic, Infrared and NMR (¹H and ¹³C) Spectral Studies of N-(Substituted Phenyl)-Methanesulphonamides

K. L. Jayalakshmi and B. Thimme Gowda

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574 199, Mangalore, India.

Reprint requests to Prof. B. T. G.; Fax: 91 824 2287 367; E-mail: gowdabt@yahoo.com

Z. Naturforsch. **59a**, 491 – 500 (2004); received February 19, 2004

Twenty two N-(substituted phenyl)-methanesulphonamides of the general formula, CH₃SO₂NHR, where $R = 4-XC_6H_4(X = H, CH_3, F, Cl, Br or NO_2)$, $i-XC_6H_4(X = CH_3, Cl or NO_2)$ and i = 2 or 3) and $i, j-X_2C_6H_3(i, j-X_2 = 2,3-(CH_3)_2, 2,4-(CH_3)_2, \overline{2},5-(CH_3)_2, 2,6-(CH_3)_2, 3,5-(\overline{CH}_3)_2, 2,3-Cl_2, 2,4-(CH_3)_2, 2,$ Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂) were prepared, characterized and their infrared spectra in the solid state and the NMR (¹H and ¹³C) spectra in solution studied. The N-H stretching vibrations absorb in the range, $3298-3232~\text{cm}^{-1}$. Asymmetric and symmetric SO_2 stretching vibrations appear as strong absorptions in the ranges, 1331 - 1317 cm⁻¹ and 1157 - 1139 cm⁻¹, respectively. The sulphonamides exhibit S-N stretching vibrations in the range, 926 – 833 cm⁻¹. The effect of substitution in the phenyl ring in terms of electron withdrawing and electron donating groups is non-systematic. The ¹H and ¹³C chemical shifts of N-(substituted phenyl)-methanesulphonamides are assigned to various protons and carbons of the compounds. Further, incremental shifts of the ring protons and carbons due to CH₃SO₂- and CH₃SO₂NH- groups in the N-(phenyl)-methanesulphonamide are computed and used to calculate the ¹H and ¹³C chemical shifts of various protons and carbons of N-(substituted phenyl)-methanesulphonamides, by adding substituent contributions to the corresponding aromatic proton or carbon chemical shifts of either aniline, substituted anilines, benzene or substituted benzenes, in different ways, as per the principle of substituent addition. The computed values by different procedures agree well with each other and with the experimental chemical shifts. The correlation of these incremental shifts with the Hammett substituent parameters is poor.

Key words: Infrared; ¹H and ¹³C NMR; N-(substituted phenyl)-methanesulphonamides.

1. Introduction

Sulphonamides are of fundamental chemical interest as they show distinct physical, chemical and biological properties. Many sulphonamides exhibit pharmacological, fungicidal and herbicidal activities because of their oxidising action in aqueous, partial aqueous and non-aqueous media [1-12]. Thus an understanding of the formation, properties and reactions of sulphonamides is central to future development in areas such as medicinal and redox chemistry [13-19]. We report herein the preparation, characterization, IR and NMR spectra of 22 N-(substituted phenyl)-methanesulphonamides of the general formula, CH_3SO_2NHR , where $R = 4-XC_6H_4(X = H, CH_3,$ F, Cl, Br or NO₂); i-XC₆H₄ (X = CH₃, Cl or NO₂ and i = 2 or 3) and $i, j-X_2C_6H_3(i, j-X_2 = 2,3-(CH_3)_2, 2,4-$ (CH₃)₂, 2,5-(CH₃)₂, 2,6-(CH₃)₂, 3,5-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂).

2. Experimental

2.1. Materials and Methods

The N-(substituted phenyl)-methane sulphonamides were prepared by the reactions of methane sulphonylchloride with the corresponding anilines [20]. The reaction mixtures were heated to about $40-50^{\circ}$ for a few minutes and allowed to stand for several hours to several days at room temperature. The completion of the reactions with nitro substituted compounds took longer periods, while those of the methyl substituted compounds took longer periods for the precipitation due to crystallization problems. The products were then cooled with ice cold water. The resultant solid sulphonamides were filtered under suction, washed thoroughly with ice cold water and recrystallised to constant melting points from dilute ethanol (Table 1).

0932-0784 / 04 / 0700-0491 \$ 06.00 © 2004 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Table 1. The melting points of N-(substituted phenyl)-methanesulphonamides.

N-(substituted phenyl)-methanesulphonamides	m. p. (°C)
CH ₃ SO ₂ NHC ₆ H ₅	99
$CH_3SO_2NH(2-CH_3C_6H_4)$	44
$CH_3SO_2NH(2-ClC_6H_4)$	56
$CH_3SO_2NH(2-NO_2C_6H_4)$	158 - 160
$CH_3SO_2NH(3-CH_3C_6H_4)$	46 - 49
CH ₃ SO ₂ NH(3-ClC ₆ H ₄)	38
$CH_3SO_2NH(3-NO_2C_6H_4)$	150 - 152
$CH_3SO_2NH(4-CH_3C_6H_4)$	40
$CH_3SO_2NH(4-FC_6H_4)$	46
CH ₃ SO ₂ NH(4-ClC ₆ H ₄)	122 - 124
$CH_3SO_2NH(4-BrC_6H_4)$	96 - 98
$CH_3SO_2NH(4-NO_2C_6H_4)$	176 - 178
$CH_3SO_2NH(2,3-(CH_3)_2C_6H_3)$	38 - 40
$CH_3SO_2NH(2,4-(CH_3)_2C_6H_3)$	46 - 48
$CH_3SO_2NH(2,5-(CH_3)_2C_6H_3)$	42
$CH_3SO_2NH(2,6-(CH_3)_2C_6H_3)$	37 - 40
CH ₃ SO ₂ NH(3,5-(CH ₃) ₂ C ₆ H ₃)	38 - 40
$CH_3SO_2NH(2,3-Cl_2C_6H_3)$	52
$CH_3SO_2NH(2,4-Cl_2C_6H_3)$	78 - 80
$CH_3SO_2NH(2,5-Cl_2C_6H_3)$	126
$CH_3SO_2NH(2,6-Cl_2C_6H_3)$	56 - 58
$CH_3SO_2NH(3,4-Cl_2C_6H_3)$	116-118
	CH ₃ SO ₂ NHC ₆ H ₅ CH ₃ SO ₂ NH(2-CH ₃ C ₆ H ₄) CH ₃ SO ₂ NH(2-CIC ₆ H ₄) CH ₃ SO ₂ NH(2-NO ₂ C ₆ H ₄) CH ₃ SO ₂ NH(3-CH ₃ C ₆ H ₄) CH ₃ SO ₂ NH(3-CIC ₆ H ₄) CH ₃ SO ₂ NH(3-CIC ₆ H ₄) CH ₃ SO ₂ NH(4-CH ₃ C ₆ H ₄) CH ₃ SO ₂ NH(4-CH ₃ C ₆ H ₄) CH ₃ SO ₂ NH(4-FC ₆ H ₄) CH ₃ SO ₂ NH(4-BrC ₆ H ₄) CH ₃ SO ₂ NH(4-NO ₂ C ₆ H ₄) CH ₃ SO ₂ NH(2,3-(CH ₃) ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-(CH ₃) ₂ C ₆ H ₃) CH ₃ SO ₂ NH(3-5-(CH ₃) ₂ C ₆ H ₃) CH ₃ SO ₂ NH(3,5-(CH ₃) ₂ C ₆ H ₃) CH ₃ SO ₂ NH(3,5-(CH ₃) ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,4-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,5-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,6-Cl ₂ C ₆ H ₃) CH ₃ SO ₂ NH(2,6-Cl ₂ C ₆ H ₃)

2.2. Spectral Measurements

Infrared spectra: Infrared spectral measurements were made on a JASCO-430 (Japan) FT-IR spectrometer. The resolution was set to 2 cm⁻¹ and the scanning range was 400 to 4000 cm⁻¹. The spectra were measured in the solid state as pressed KBr pellets (13 mm).

¹H and ¹³C NMR spectra: The proton NMR spectra of all the N-(substituted phenyl)-methanesulphonamides were measured on a BRUKER Ac 300F, 300 MHz FT-NMR spectrometer. The spectra were recorded in CDCl₃ and DMSO with tetramethylsilane (Me₄Si) as internal standard. The experimental conditions employed were as follows; The spectral frequency (SF) was kept at 300.134 MHz, sweep width (SW) at 6024.096, pulse width (PW) at 8.0, relaxation delay (RD) of 1.0(sec), acquisition time (AQ) was 1.360(sec), receiver gain (RG) 10, decoupling power (DP) was 63L CPD, filter to suppress noise (LB) 0.0, reference value (SR) was set at 4125.36 ppm for H₂O internally. For ¹³C NMR spectra, the spectral frequency (SF) was kept at 75.469 MHz, sweep

Assignments			CH ₃ SO ₂	NH(i-XC ₆ F	I ₄); <i>i</i> -X =		
	H	2-CH ₃	2-C1	$2-NO_2$	3-CH ₃	3-C1	$3-NO_2$
N-H(Sym str)	3256.2s	3280.3s	3283.2s	3282.6s	3249.5s	3232.1s	3298.0s
С-Н	3018.1w	3025.8w	3012.3w	_	3018.1w	_	3120.6w
(Ar sym str)		3010.3w					3035.7w
C-H(Alk str)	2932.2w	2979.5w	2933.2w	2929.7w	2929.3w	2928.4m	2941.2w
		2931.3w					
Combination	_	1951.6w	1624.7w	_	1610.3w	_	1969.2w
bands							1897.8w
							1622.0w
C=C	1595.8w	1583.3m	1588.1w	1487.0m	1589.1w	1594.8w	1527.5s
(Ar in plane	1495.5w	1496.5m	1479.1s		1492.6m	1554.3w	1483.2m
str)	1472.4w	1467.6w	1456.0w			1505.2w	
						1474.3m	
N-H(in plane bend)	1394.3m	1400.1m	1399.1m	1380.9m	1390.4m	1391.4m	1404.1m
S=O (Asym str)	1323.9s	1317.1s	1318.1s	1323.1s	1317.1s	1318.1s	1328.9s
C-N(str)	1275.7w	1280.5w	1275.7m	1272.9w	1270.9w	_	1267.1w
	_	1238.1w	1224.6w		1251.6w		1224.7w
S=O(Sym str)	1151.3s	1153.2s	1155.2s	1153.4s	1145.5s	1148.4s	1155.3s
C-H(Ar in	1076.1w	1110.8m	1058.7m	1112.9w	_	1080.9w	1080.1w
plane bend)	1027.9w	1045.2w					
C-X(str)	_	_	1032.7w	_	_	_	_
S-N(sym str)	895.8w	914.1w	866.9w	867.9w	912.2w	866.9w	883.3s
C-S(str)	774.3w	742.5s	745.4m	759.9m	771.4m	786.8m	738.7m
C-H(Ar out of	756.9w	833.1m	685.6w	827.4w	742.5m	675.9m	815.8m
plane bend)	650.3w	626.8w	619.0w	603.7w	644.1w		673.1m
N-H(out of	694.3m	709.7w	720.3w	_	692.3m	707.8w	_
plane bend)							
C=C(Ar out of	490.0w	445.5w	457.1w	466.7m	447.4w	_	_
plane bend)		428.1w	413.7w	432.0w	408.8w		

Table 2. Infrared absorption frequencies (cm^{-1}) of N-(2/3-substituted phenyl)-methanesulphonamides.

s = strong, m = medium and w = weak

Assignments		(CH ₃ SO ₂ NH(i-	-XC ₆ H ₄); <i>i</i> -X	=	
•	Н	$4-CH_3$	4-F	4-C1	4-Br	$4-NO_2$
N-H(Sym str)	3256.2s	3291.9s	3243.7s	3288.0s	3286.5s	3283.2w
C-H (Ar sym str)	3018.1w	3021.9w	3015.2w	3006.5w	_	_
C-H(Alk str)	2932.2w	2931.3w	2931.3w	2927.4w	_	_
		2865.7w				
Combination	_	1889.9w	1605.5w	_	1668.3w	1631.5 m
bands		1614.1m				
C=C	1595.8w	1510.0m	1509.0m	1589.1w	1587.3w	1597.7m
(Ar in	1495.5w	1475.3m	1448.3w	1490.7m	1488.9m	1474.3m
plane str)	1472.4w			1452.1m	1448.4m	
N-H(in plane bend)	1394.3m	1394.3m	1391.4w	1386.6m	1382.9m	_
S=O (Asym str)	1323.9s	1330.6s	1319.1s	1326.8s	1323.1s	1327.6s
C-N(str)	1275.7w	1282.4w	1243.9w	1294.0w	_	_
	_	1230.4w		1218.8w		
S=O(Sym str)	1151.3s	1155.2s	1145.5s	1146.5s	1149.5s	1138.8s
C-H(Ar in	1076.1w	1047.2w	1093.4w	1090.6m	1066.6w	1112.7s
plane bend)	1027.9w	1020.2w				
C-X(str)	_	_	_	1016.3w	_	_
S-N(sym str)	895.8w	925.7w	898.7w	899.6w	_	841.8w
C-S(str)	774.3w	771.4w	777.2w	773.3m	765.7m	751.1w
C-H(Ar out	756.9w	740.5w	_	696.2w	677.0w	_
of plane bend)	650.3w	642.2w	647.0w	626.8w		
N-H(out of	694.3m	_	_	711.6w	_	_
plane bend)						
C=C(Ar out of	490.0w	_	_	493.7m	_	492.7w
plane bend)				452.2w		

Table 3. Infrared absorption frequencies (cm^{-1}) of N-(4-substituted phenyl)-methanesulphonamides.

 $s = strong, \ m = medium \ and \ w = weak$

Assignments		CH ₃ SO	$_{2}NH(i-XC_{6}H_{4});$	$i, j-X_2 =$	
-	$2,3-(CH_3)_2$	$2,4-(CH_3)_2$	$2,5-(CH_3)_2$	$2,6-(CH_3)_2$	$3,5-(CH_3)_2$
N-H(Sym str)	3272.6s	3276.5s	3274.5s	3268.8s	3253.3s
C-H (Ar sym str)	3016.1w	_	3016.1w	3010.3w	3037.3w
C-H(Alk str)	2933.2w	2931.3w	2931.3w	2930.3w	2942.8w
					2916.8w
Combination	1618.0w	_	1618.0w	_	1731.8w
bands					1606.4s
C=C (Ar in	1577.5w	1502.3w	1577.5w	1470.5w	1505.2m
plane str)	1508.1w		1508.1w		1437.7m
1411.6m					
N-H(in plane bend)	1396.2m	1386.6m	1394.3m	1397.2m	1371.1w
S=O (Asym str)	1319.1s	1322.9s	1319.1s	1318.1s	1327.8s
C-N(str)	1253.5w	1284.4w	1253.5w	1195.7w	1258.3m
S=O(Sym str)	1153.2s	1153.2s	1153.2s	1148.4s	1138.8s
C-H(Ar in	1114.7w	1116.6w	1114.7m	_	1048.1s
plane bend)	1047.2w		1004.7w		
C-X(str)	_	_	_	_	_
S-N(sym str)	900.6w	889.0w	900.6w	899.6w	873.6s
C-S(str)	757.9m	759.8m	757.9m	769.5s	756.0s
C-H(Ar out of	817.7w	827.3m	817.7m	830.2w	835.0s
plane bend)		615.2w	_	690.4w	686.5s
N-H(out of	703.9w	715.5w	_	732.8w	_
plane bend)					
C=C(Ar out of	470.6w	462.8w	468.6w	489.8w	444.5w
plane bend)	455.1w			465.7w	

Table 4. Infrared absorption frequencies (cm $^{-1}$) of N-(dimethylsubstituted phenyl)-methanesulphonamides.

 $s = strong, \; m = medium \; and \; w = \\ weak$

Assignments		CH ₃ SO ₂	$NH(i-XC_6H_4);$	$i, j-X_2 =$	
-	2,3-Cl ₂	2,4-Cl ₂	2,5-Cl ₂	2,6-Cl ₂	3,4-Cl ₂
N-H(Sym str)	3282.6m	3255.3s	3251.4m	3249.5s	3255.3s
C-H (Ar sym str)	3020.3w	_	_	3018.1w	3012.3w
C-H(Alk str)	2931.6w	2885.0w	2360.5w	2929.3w	2931.3w
Combination bands	_	-	_	1610.3w	_
C=C	1583.4m	1595.8m	1581.3w	1589.1w	1591.0m
(Ar in plane str)	1458.1s	1491.7m 1473.4w	1477.2m	1492.6m	1510.0w 1469.5s
N-H(in plane bend)	1380.9m	1395.3w	1390.4m	1392.4m	1376.9m
S=O (Asym str)	1325.0m	1326.8m	1326.8s	1317.1s	1317.1s
C-N(str)	-	1299.4m	1247.7w	1272.8w 1251.6w	1282.4w 1267.0w
S=O(Sym str)	1157.2s	1155.2s	1157.1s	1145.5s	1147.4s
C-H(Ar in plane bend)	_	1092.5s	1093.4w	_	1039.4w
C-X(str)	_	_	1049.1w	_	1025.9w
S-N(sym str)	833.2w	865.9w	889.0w	885.2w	877.5w
C-S(str)	767.6m	779.1m	761.7w	771.4m	754.0w
C-H(Ar out of plane bend)	-	681.7w 623.9w	-	742.5m 642.2w	686.5w 665.3w
N-H(out of plane bend)	-	-		692.3m	727.0w
C=C(Ar out of plane bend)	439.7w	-	453.2w	447.4w 412.7w	495.6m 441.6w

Table 5. Infrared absorption frequencies (cm⁻¹) of N-(dichlorosubstituted phenyl)-methanesulphonamides.

 $s = strong, \; m = medium \; and \; w = \\ weak$

CH ₃ SO ₂ NH(<i>i</i> -XC ₆ H ₄)											
i-X	H-2	H-3	H-4	H-5	H-6	N-H	Alkyl H				
H	7.34d	7.27t	7.18t	7.27t	7.34d	7.38	3.00				
2-CH ₃	_	7.13m	7.13m	7.21d	7.43d	6.80	3.00, 2.33				
2-C1	-	7.27m	7.13m	7.27m	7.40m	-	3.02				
$2-NO_2$	_	8.06d	6.66d	7.33d	6.82d	-	3.18				
3-CH ₃	7.21t	_	6.98d	7.08s	7.21t	7.32	3.00, 2.32				
3-C1	7.46m	_	7.22d	7.37m	7.46m	9.78	2.97				
$3-NO_2$	8.12d	_	7.90d	7.53d	7.64d	10.2	3.04				
4-CH ₃	7.14m	7.14m	-	7.14m	7.14m	6.35	2.98, 2.34				
4-F	7.04m	7.26m	-	7.26m	7.04m	-	3.00				
4-Cl	7.25t	7.25t	_	7.25t	7.25t	9.30	2.94				
4-Br	7.44t	7.13d	_	7.13d	7.44t	7.21	3.00				
4-NO ₂	6.63m	8.07m	-	8.07m	6.63m	7.35	3.15				
i, j - X_2			СН	3SO ₂ NH(i,	j - $X_2C_6H_3)$						
2,3-(CH ₃) ₂	_	_	7.05m	7.11d	7.26m	6.67	2.99, 2.30, 2.25				
$2,4-(CH_3)_2$	_	7.00s	_	7.02d	7.27d	6.63	2.97, 2.30, 2.29				
$2,5-(CH_3)_2$	_	7.09d	6.94d	_	7.25s	6.62	3.00, 2.31, 2.28				
$2,6-(CH_3)_2$	_	7.09t	7.09t	7.09t	_	6.36	3.05, 2.40				
$3,5-(CH_3)_2$	6.86d	_	6.81s	_	6.86d	6.98	3.00, 2.30				
2,3-Cl ₂	_	_	7.27m	7.27m	7.59d	7.00	3.05				
2,4-Cl ₂	_	7.34m	-	7.34m	7.59d	6.85	3.02				
2,5-Cl ₂	_	7.36d	7.12m	_	7.68d	6.87	3.06				
2,6-Cl ₂	_	7.41d	7.20t	7.41d	_	6.53	3.30				

7.16d

7.36d

3.04

7.36d

 $3,4-Cl_2$

Table 6. 1 H NMR observed chemical shifts (δ , ppm) of various aromatic and other protons in N-(mono / di-substituted phenyl)-methanesul-phonamides.

Table 7. ¹H chemical shifts of benzene, substituted benzenes, aniline and substituted anilines, measured under identical conditions.

Commound	H-2	11.2	H-4	H-5	H-6
Compound	H-2	H-3	H-4 ituted ber		H-0
$\overline{C_6H_6}$	7.29	7.29	7.29	7.29	7.29
	7.29	7.29	7.29	7.29	7.29
CH ₃ C ₆ H ₅	7.06	7.13	7.13	7.13	7.00
$C_2H_5C_6H_5$ FC ₆ H ₅	7.12	7.23	7.23	7.23	7.12
ClC ₆ H ₅	7.26	7.21	7.26	7.21	7.26
BrC ₆ H ₅	7.20	7.20	7.20	7.20	7.20
NO ₂ C ₆ H ₅	8.15	7.52	7.68	7.52	8.15
1,2-(CH ₃) ₂ C ₆ H ₄	0.13	7.04	7.08	7.04	7.04
1,3-(CH ₃) ₂ C ₆ H ₄	6.88	-	7.04	7.04	7.04
	6.98	- 6.98	7.00	6.98	6.98
1,4-(CH ₃) ₂ C ₆ H ₄ 1,2-Cl ₂ C ₆ H ₄	0.96	7.26	- 7.26	7.26	7.26
1,3-Cl ₂ C ₆ H ₄	7.08	7.20	7.28	7.28	7.20
1,4-Cl ₂ C ₆ H ₄	7.24	7.24	7.00	7.03	7.24
1,4-C12C6114	7.24		tituted an		7.24
C ₆ H ₅ NH ₂	6.48	7.05	6.67	7.05	6.48
2-CH ₃ C ₆ H ₄ NH ₂	0.40	6.97	6.64	6.97	6.49
2-ClC ₆ H ₄ NH ₂	_	7.13	6.93	7.13	6.59
2-NO ₂ C ₆ H ₄ NH ₂	_	8.02	6.86	7.13	6.60
3-CH ₃ C ₆ H ₄ NH ₂	6.33	-	6.51	6.96	6.33
3-ClC ₆ H ₄ NH ₂	6.41	_	6.65	6.95	6.41
$3-NO_2C_6H_4NH_2$	7.46	_	7.55	7.26	7.06
4-CH ₃ C ₆ H ₄ NH ₂	6.49	6.89	-	6.89	6.49
4-FC ₆ H ₄ NH ₂	6.46	6.80	_	6.80	6.46
4-ClC ₆ H ₄ NH ₂	6.48	7.03	_	7.03	6.48
4-BrC ₆ H ₄ NH ₂	6.49	7.20	_	7.20	6.49
$4-NO_2C_6H_4NH_2$	6.64	7.96	_	7.96	6.64
2,3-(CH ₃) ₂ C ₆ H ₃ NH ₂	_	_	6.53	6.82	6.34
2,4-(CH ₃) ₂ C ₆ H ₃ NH ₂	_	6.74	_	6.74	6.36
2,5-(CH ₃) ₂ C ₆ H ₃ NH ₂	_	6.83	6.44	_	6.27
2,6-(CH ₃) ₂ C ₆ H ₃ NH ₂	_	6.80	6.54	6.80	_
3,5-(CH ₃) ₂ C ₆ H ₃ NH ₂	6.09	_	6.32	_	6.09
2,3-Cl ₂ C ₆ H ₃ NH ₂	_	_	6.73	6.84	6.47
2,4-Cl ₂ C ₆ H ₃ NH ₂	_	7.07	_	7.07	6.64
2,5-Cl ₂ C ₆ H ₃ NH ₂	_	7.05	6.59	_	6.59
2,6-Cl ₂ C ₆ H ₃ NH ₂	_	7.12	6.87	7.12	_
3,4-Cl ₂ C ₆ H ₃ NH ₂	6.54	_	_	7.17	6.54

width (SW) at 22727.273, pulse width (PW) at 5.0, relaxation delay (RD) of 1.0(sec), acquisition time (AQ) was 0.360(sec), receiver gain (RG) 400, decoupling power (DP) was 14H CPD, filter to suppress noise (LB) 6.0, reference value (SR) was set at 701.89 ppm for DMSO at 39.5 ppm externally.

3. Results and Discussion

3.1. Infrared Spectra

The general assignments of the important infrared absorption frequencies of N-(substituted phenyl)-methanesulphonamides are shown in Tables 2-5. The infrared absorption frequencies of N-(phenyl)-methanesulphonamide reported earlier [20] were also

Table 8. Shifts in the position of benzene protons (δ 7.27) caused by the substituents.

Substituent	ortho	meta	para
-CH ₃ , -R	-0.15	-0.10	-0.10
-COOH, -COOR	+0.80	+0.15	+0.20
-CN	+0.30	+0.30	+0.30
-CONH ₂	+0.50	+0.20	+0.20
-COR	+0.60	+0.30	+0.30
-SR	+0.10	-0.10	-0.20
-NH ₂ , -NHR	-0.80	-0.15	-0.40
$-N(CH_3)_2$	-0.50	-0.20	-0.50
-I	+0.30	-0.20	-0.10
-CHO	+0.70	+0.20	+0.40
-Br	0.00	0.00	0.00
-NHCOR	0.40	-0.20	-0.30
-Cl	0.00	0.00	0.00
-F	+0.30	+0.02	+0.22
$-NH_3^+$	+0.40	+0.20	+0.20
-OR	-0.20	-0.20	-0.20
-OH	-0.40	-0.40	-0.40
-OCOR	+0.20	-0.10	-0.20
-NO ₂	+1.00	+0.30	+0.40
-SO ₃ H, -SO ₂ NH ₂	+0.40	+0.10	+0.10

measured under identical conditions and included in the table for comparison. Assignment of various bands in various compounds, in general, has been dealt with in detail elsewhere [13, 21 – 24], giving a table of characteristic group absorptions. The ranges of group absorptions have been assigned based on many compounds in which the groups occur. Although the ranges are quite well defined, the precise frequency or wavelength at which a specific group absorbs is dependent on its environment within the molecule and on its physical state. N-H stretching vibrations absorb in the ranges, 3298-3232 cm^{$-\bar{1}$}. Asymmetric and symmetric SO₂ stretching vibrations appear as strong absorptions in the ranges, 1331-1317 cm⁻¹ and 1157-1139 cm⁻¹, respectively. The values reported for N-(phenyl)-methanesulphonamide are 1323 cm⁻¹ and 1150 cm⁻¹, respectively. N-(substituted phenyl)methanesulphonamides exhibit S-N stretching vibrational absorptions in the range, 926-833 cm⁻¹. The C-S stretching frequency of the compounds containing the alkyl -SO₂ group is found to be in the region $787-739 \text{ cm}^{-1}$. The other discussions are similar to the organic aromatic compounds in general. The effect of substitution in the phenyl ring in terms of electron withdrawing and electron donating groups is nonsystematic.

3.2. ¹H NMR Spectra

¹H chemical shifts of aromatic and alkyl protons of all the N-(substituted phenyl)-methanesulphonamides

Table 9. Calculated and observed chemical shifts (δ , ppm) of various aromatic protons in N-(mono-substituted phenyl)-methanesulphonamides (CH₃SO₂NH(i-XC₆H₄)).

i-X			H-2					H-3					H-4		
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.
Н	_	_	_	_	7.34d	_	-	-	-	7.27t	-	_	-	_	7.18t
$2-CH_3$	_	_	_	_	_	7.12	7.19	7.12	7.04	7.13m	7.08	7.15	7.08	7.04	7.13m
2-C1	_	_	_	_	_	7.27	7.35	7.27	7.24	7.27m	7.18	7.44	7.18	7.15	7.13m
$2-NO_2$	-	-	-	-	-	8.27	8.24	8.27	8.13	8.06d	7.48	7.37	7.48	7.41	6.66d
$3-CH_3$	7.19	7.19	7.19	7.20	7.21t	_	_	_	_	_	7.03	7.02	7.03	6.95	6.98d
3-C1	7.34	7.27	7.34	7.31	7.46m	_	_	_	_	_	7.18	7.16	7.18	7.15	7.22d
$3-NO_2$	8.34	8.32	8.34	8.20	8.12d	_	_	_	_	_	8.18	8.06	8.18	8.04	7.90d
4-CH ₃	7.24	7.35	7.24	7.20	7.14m	7.12	7.11	7.12	7.04	7.14m	_	_	-	_	_
4-F	7.36	7.32	7.36	7.26	7.04m	7.57	7.02	7.57	7.48	7.26m	_	_	-	_	-
4-C1	7.34	7.34	7.34	7.31	7.25t	7.27	7.25	7.27	7.24	7.25t	-	-	_	-	_
4-Br	7.34	7.35	7.34	7.26	7.44t	7.27	7.42	7.27	7.19	7.13d	_	_	_		_
$4-NO_2$	7.64	7.50	7.64	7.57	6.63m	8.27	8.18	8.27	8.13	8.07m	_	_	-		_
i-X			H-5					H-6							
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.					
H	_	-	-	-	7.27t	-	-	_	-	7.34d					
$2-CH_3$	7.17	7.19	7.17	7.13	7.21d	7.24	7.35	7.24	7.20	7.43d					
2-C1	7.27	7.35	7.27	7.24	7.27m	7.34	7.45	7.34	7.31	7.40m					
$2-NO_2$	7.67	7.50	7.67	7.66	7.33d	7.64	7.46	7.64	7.57	6.82d					
$3-CH_3$	7.17	7.18	7.17	7.18	7.08s	7.24	7.19	7.24	7.29	7.21t					
3-C1	7.27	7.17	7.27	7.24	7.37m	7.34	7.27	7.34	7.31	7.46m					
$3-NO_2$	7.57	7.48	7.57	7.50	7.53d	7.74	7.92	7.74	7.73	7.64d					
4-CH ₃	7.12	7.11	7.12	7.04	7.14m	7.24	7.35	7.24	7.20	7.14m					
4-F	7.57	7.02	7.57	7.48	7.26m	7.36	7.32	7.36	7.25	7.04m					
4-C1	7.27	7.25	7.27	7.24	7.25t	7.34	7.34	7.34	7.31	7.25t					
4-Br	7.27	7.42	7.27	7.19	7.13d	7.34	7.35	7.34	7.26	7.44t					
$4-NO_2$	8.27	8.18	8.27	8.13	8.07m	7.64	7.50	7.64	7.57	6.63m					

Table 10. Calculated and observed chemical shifts (δ, ppm) of various aromatic protons in N-(mono-substituted phenyl) methanesulphonamides $(CH_3SO_2NH(i, j-X_2C_6H_3))$.

i-X			H-2					H-3					H-4		
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.
$2,3-(CH_3)_2$	-	_	-	_	_	_	_	_	_	_	6.93	7.04	6.93	6.93	7.05m
$2,4-(CH_3)_2$	_	_	_	_	_	6.97	6.96	6.97	6.86	7.00s	_	_	_	_	_
$2,5-(CH_3)_2$	_	_	_	_	_	7.02	7.05	7.02	6.96	7.09d	6.93	6.95	6.93	6.87	6.94d
$2,6-(CH_3)_2$	_	_	_	_	_	7.02	7.02	7.02	6.86	7.09t	6.98	7.05	6.98	6.97	7.09t
$3,5-(CH_3)_2$	7.09	6.95	7.09	7.11	6.86d	_	_	_	_	_	6.88	6.83	6.88	6.77	6.81s
2,3-Cl ₂	_	_	_	_	-	_	_	-	_	_	7.18	7.24	7.18	7.15	7.27m
2,4-Cl ₂	-	_	-	-	_	7.27	7.29	7.27	7.06	7.34m	_	_	_	-	-
2,5-Cl ₂	-	_	-	-	_	7.27	7.27	7.27	7.22	7.36d	7.18	7.10	7.18	7.13	7.12m
2,6-Cl ₂	_	_	_		-	7.27	7.34	7.27	7.06	7.41d	7.18	7.38	7.18	6.97	7.20t
3,4-Cl ₂	7.34	7.40	7.34	7.31	7.36d	_	_	-	-	_	_	_	_	-	-
i, j - X_2			H-5					H-6							
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.					
$2,3-(CH_3)_2$	7.07	7.04	7.07	7.02	7.11d	7.14	7.20	7.14	7.09	7.26m					
$2,4-(CH_3)_2$	7.02	6.96	7.02	7.04	7.02d	7.14	7.22	7.14	7.13	7.27d					
$2,5-(CH_3)_2$	_	_	_	_	_	7.09	7.13	7.09	7.03	7.25s					
$2,6-(CH_3)_2$	7.02	7.02	7.02	7.04	7.09t	_	_	_	_	_					
$3,5-(CH_3)_2$	_	_	_	_	_	7.09	6.95	7.09	7.11	6.86d					
$2,3-Cl_2$	7.27	7.06	7.27	7.24	7.27m	7.34	7.33	7.34	7.31	7.59d					
$2,4-Cl_2$	7.27	7.29	7.27	7.06	7.34m	7.34	7.50	7.34	7.13	7.59d					
2,5-Cl ₂	_	_	_	_	_	7.34	7.45	7.34	7.29	7.68d					
2,6-Cl ₂	7.27	7.34	7.27	7.06	7.41d	_	_	-	-	_					
3,4-Cl ₂	7.27	7.39	7.27	7.24	7.16d	7.34	7.40	7.34	7.31	7.36d					

Table 11. 13 C NMR observed chemical shifts (δ , ppm) of various aromatic and other carbons in N-(mono / disubstituted phenyl)-methanesulphonamides.

	•	•		•						
$CH_3SO_2NH(i-XC_6H_4)$										
i-X	C-1	C-2	C-3	C-4	C-5	C-6	Alkyl C			
H	136.9	120.9	129.6	125.4	129.6	120.9	39.1			
2-CH ₃	134.8	131.2	131.2	126.2	127.1	123.4	39.8, 18.0			
2-C1	133.4	126.2	129.6	125.4	127.9	123.0	39.8			
$2-NO_2$	132.1	144.8	123.6	126.2	135.6	119.3	40.8			
3-CH ₃	136.8	121.4	139.7	126.1	129.4	117.8	39.0, 21.3			
3-C1	139.3	123.4	132.6	128.0	130.4	121.6	39.5			
$3-NO_2$	139.5	113.3	148.3	117.9	130.0	125.0	39.3			
4-CH ₃	134.2	121.7	130.2	135.5	130.2	121.7	39.0, 20.8			
4-F	132.6	123.9	116.5	159.1	116.5	123.9	39.8			
4-Cl	136.5	121.5	129.1	129.4	129.1	121.5	39.3			
4-Br	136.0	122.4	132.1	121.6	132.8	132.0	39.5			
4-NO ₂	126.4	125.8	113.5	152.6	113.5	125.8	_			
i, j - X_2			CH_3	SO ₂ NI	$\mathbf{H}(i, j-\mathbf{X})$	C_6H_3	3)			
$2,3-(CH_3)_2$	134.4	131.4	138.4	126.3	128.5	122.6	39.8, 20.7, 14.2			
$2,4-(CH_3)_2$	136.4	131.9	132.0	136.4	127.7	124.4	39.6, 20.8, 18.0			
$2,5-(CH_3)_2$	137.1	127.7	131.0	126.9	134.6	123.9	39.8, 21.0, 17.5			
$2,6-(CH_3)_2$	137.5	132.9	128.9	128.0	128.9	132.9	41.8, 19.2			
$3,5-(CH_3)_2$	136.7	118.5	139.6	127.2	139.6	118.5	39.2, 21.3			
$2,3-Cl_2$	135.4	126.8	133.7	123.6	128.2	120.0	40.3			
$2,4-Cl_2$	132.4	128.6	129.6	131.4	126.0	123.7	40.1			
$2,5-Cl_2$	134.7	122.6	130.6	126.1	134.2	121.6	40.3			
$2,6-Cl_2$	135.0	131.5	129.2	129.0	129.2	131.5	43.4			
3,4-Cl ₂	130.8	116.5	131.3	122.1	119.8	114.7	39.8			

are shown in Table 6. 1H chemical shifts of benzene, substituted benzenes, aniline and substituted anilines were also measured under identical conditions and included in Table 7. The various chemical shifts were assigned to the aromatic and aliphatic protons in line with those for similar compounds [13, 21, 22, 25-28]. Further, the incremental shifts of the aromatic protons due to the CH₃SO₂- group in the compound CH₃SO₂NH(C₆H₅) were calculated by comparing the chemical shifts of the aromatic protons in this compound with the aniline proton values of H-2,6 = 6.48 ppm, H-3.5 = 7.05 ppm and H-4 = 6.67 ppm. The computed incremental shifts are H-2,6 = 0.86, H-3.5 = 0.22 and H-4 = 0.51. Then the chemical shifts of the aromatic protons in the substituted compounds of the general formula CH_3SO_2NHR , where R=4- $XC_6H_4(X = CH_3, F, Cl, Br or NO_2), i-XC_6H_4(X =$ CH₃, Cl or NO₂ and i = 2 or 3) and i, j-X₂C₆H₃(i, j- $X_2 = 2,3-(CH_3)_2, 2,4-(CH_3)_2, 2,5-(CH_3)_2, 2,6-(CH_3)_2,$ 3,5-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂) were computed in two ways (calc. 1 and calc. 2), by using the calculated incremental shifts of aromatic protons due to the CH₃SO₂- group. In the first method (calc. 1), the chemical shifts of the protons in the N-(substituted phenyl)-methanesulphonamides

Table 12. ¹³C chemical shifts of benzene, substituted benzenes, aniline and substituted anilines measured under identical conditions.

Compound	C-1	C-2	C-3	C-4	C-5	C-6
1		Su	bstituted	d benzei	nes	
C_6H_6	128.4	128.4	128.4	128.4	128.4	128.4
CH ₃ C ₆ H ₅	137.7	129.0	128.2	125.3	128.2	129.0
$C_2H_5C_6H_5$	144.3	127.9	128.4	125.7	128.4	127.9
FC ₆ H ₅	164.6	115.4	130.1	124.1	130.1	115.4
CIC ₆ H ₅	134.4	128.7	129.8	126.5	129.8	128.7
BrC ₆ H ₅	122.5	131.5	130.0	126.8	130.0	131.5
$NO_2C_6H_5$	147.5	122.5	128.8	134.2	128.8	122.5
$1,2-(CH_3)_2C_6H_4$	136.4	136.4	129.6	125.9	125.9	129.6
$1,3-(CH_3)_2C_6H_4$	137.6	129.9	137.6	126.1	128.2	126.1
$1,4-(CH_3)_2C_6H_4$	134.6	128.9	128.9	134.6	128.9	128.9
$1,2$ - $Cl_2C_6H_4$	132.5	132.5	130.5	127.7	127.7	130.5
$1,3-Cl_2C_6H_4$	135.0	128.6	135.0	126.7	130.2	126.7
$1,4$ - $Cl_2C_6H_4$	132.6	129.9	129.9	132.6	129.9	129.9
		Sı	d anilin	es		
C ₆ H ₅ NH ₂	146.2	114.6	128.8	117.8	128.8	114.6
$2-CH_3C_6H_4NH_2$	144.3	124.6	129.7	117.7	126.2	114.3
2-ClC ₆ H ₄ NH ₂	142.7	118.6	129.0	118.6	127.4	115.7
$2-NO_2C_6H_4NH_2$	144.9	135.4	125.4	118.7	135.4	116.3
$3-CH_3C_6H_4NH_2$	146.4	115.6	138.6	119.0	128.8	112.0
3-ClC ₆ H ₄ NH ₂	147.6	114.5	134.2	117.8	130.1	113.0
$3-NO_2C_6H_4NH_2$	148.8	108.0	148.9	111.1	129.4	120.3
$4-CH_3C_6H_4NH_2$	143.8	115.0	129.5	127.2	129.5	115.0
$4-FC_6H_4NH_2$	142.6	115.7	115.2	154.3	115.2	115.7
$4-ClC_6H_4NH_2$	144.9	116.1	128.9	122.6	128.9	116.1
$4-BrC_6H_4NH_2$	145.6	116.7	132.0	110.1	132.0	116.7
$4-NO_2C_6H_4NH_2$	154.4	112.4	125.9	136.7	125.9	112.4
$2,3-(CH_3)_2C_6H_3NH_2$	144.3	125.5	136.4	120.0	125.5	112.7
$2,4-(CH_3)_2C_6H_3NH_2$	141.8	121.8	130.7	130.7	126.8	114.6
$2,5-(CH_3)_2C_6H_3NH_2$	144.2	118.8	129.9	118.8	136.0	115.3
$2,6-(CH_3)_2C_6H_3NH_2$	146.5	124.5	127.5	117.3	127.5	124.5
$3,5-(CH_3)_2C_6H_3NH_2$	146.8	113.3	138.7	120.3	138.7	113.3
$2,3-Cl_2C_6H_3NH_2$	144.4	119.0	132.4	116.8	127.3	113.5
$2,4-Cl_2C_6H_3NH_2$	141.7	119.5	128.9	122.8	127.7	116.4
$2,5$ - $Cl_2C_6H_3NH_2$	143.7	118.5	129.9	117.8	132.8	115.1
$2,6$ - $Cl_2C_6H_3NH_2$	146.9	123.5	129.0	121.0	129.0	123.5
$3,4-\text{Cl}_2\text{C}_6\text{H}_3\text{NH}_2$	146.1	116.3	132.5	120.8	130.6	114.6

were calculated by adding the incremental shifts due to the CH_3SO_2 - group and the substituent X (CH_3 , F, Cl, Br or NO_2) (Table 8) to the chemical shifts of the aniline protons (H-2,6 = 6.48 ppm, H-3,5 = 7.05 ppm and H-4 = 6.67 ppm). In the second method (calc. 2), the chemical shifts of the aromatic protons in CH_3SO_2NHR were evaluated by adding the incremental shifts due to the CH_3SO_2 - group to the chemical shifts of the corresponding protons of the substituted anilines (Table 7). The calculated chemical shifts by the methods 1 and 2, compared with the observed chemical shifts, are shown in Tables 9 and 10. There is a good agreement between the two sets of calculated values and the experimental chemical shifts, showing that the two methods of cal-

Table 13. Incremental Shifts of the aromatic atoms of monosubstituted benzenes (ppm from benzene at 128.5 ppm, +downfield, -upfield) carbon atom of substituents from TMS.

Substituent	C-1	C-2	C-3	C-4	C of substituent
(Attachmen	t)				(ppm from TMS)
H	0.0	0.0	0.0	0.0	-
CH_3	+9.3	+0.7	-0.1	-2.9	21.3
CH_2CH_3	+15.6	-0.5	0.0	-2.6	29.2 (CH ₂), 15.8 (CH ₃)
$CH(CH_3)_2$	+20.1	-2.0	0.0	-2.5	34.4 (CH), 24.1 (CH ₃)
C_6H_5	+12.1	-1.8	-0.1	-1.6	_
OH	+26.6	-12.7	+1.6	-7.3	_
OCH ₃	+31.4	-14.4	+1.0	-7.7	54.1
COOH	+2.9	+1.3	+0.4	+4.3	168.0
NH_2	+19.2	-12.4	1.3	-9.5	_
NO_2	+19.6	-5.3	+0.9	+6.0	_
F	+35.1	-14.3	+0.9	-4.5	-
Cl	+6.4	+0.2	+1.0	-2.0	_
Br	-5.4	+3.4	+2.2	-1.0	_
I	-32.2	+9.9	+2.6	-7.3	_
SO_2NH_2	+15.3	-2.9	+0.4	+3.3	_

culations lead to almost the same values in most cases.

Similarly, the incremental shifts of aromatic protons due to the CH₃SO₂NH- group in the compound, N-(phenyl)-methanesulphonamide, CH₃SO₂NH(C₆H₅), was computed by comparing the chemical shifts of the protons in this compound with the benzene proton value of 7.29 ppm. The calculated values are H-2.6 =0.05, H-3,5 = 0.02 and H-4 = -0.11. Then the chemical shifts of the aromatic protons in the N-(substituted phenyl)-methanesulphonamides, CH₃SO₂NHR, where $R = 4-XC_6H_4(X = CH_3, F, Cl, Br or NO_2), i XC_6H_4(X = CH_3, Cl \text{ or } NO_2 \text{ and } i = 2 \text{ or } 3)$ and $i, j-X_2C_6H_3(i, j-X_2 = 2,3-(CH_3)_2, 2,4-(CH_3)_2, 2,5-$ (CH₃)₂, 2,6-(CH₃)₂, 3,5-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂) were computed in two more ways by using the calculated incremental shifts of aromatic protons due to the CH₃SO₂NH- group. In the first method 3 (calc. 3), the chemical shifts of aromatic protons were calculated by adding the incremental shifts due to the CH₃SO₂NH- and the substituent X at different benzene positions (CH₃, F, Cl, Br or NO₂) (Table 8) to the benzene proton value of 7.29 ppm. In the other method (calc. 4), the chemical shifts of aromatic protons in the N-(substituted phenyl)-methanesulphonamides were computed by adding the incremental shifts due to the CH₃SO₂NH- group to the chemical shifts of the corresponding protons in substituted benzenes (Table 7). The calculated chemical shifts by the methods 3 and 4 are also shown in Tables 9 and 10.

The comparisons revealed that generally the four sets of calculated chemical shifts agree well with the experimental values. Thus it is evident from these that the different procedures of calculation lead to almost the same values in most cases, confirming the validity of the principle of additivity of the substituent effects in these compounds.

3.3. ¹³C NMR Spectra

The ¹³C chemical shifts of aromatic and alkyl carbons of all the N-(substituted phenyl)-methanesulphonamides are shown in Table 11. The ¹³C chemical shifts of benzene, substituted benzenes, aniline and substituted anilines were also measured under identical conditions and included in Table 12. The various chemical shifts are assigned to the different carbons in the compounds, in conformity with the literature for similar compounds [13, 21, 22, 25 – 28]. Further, the incremental shifts of C-1; C-2,6; C-3,5 and C-4 carbons due to the CH₃SO₂- group in N-(phenyl)methanesulphonamide, CH₃SO₂NH(C₆H₅) were computed by comparing the chemical shifts of the aromatic carbons in this compound with the corresponding aniline carbons (C-1 = 146.2 ppm; C-2,6 = 114.6 ppm; C-3.5 = 128.8 ppm and C-4 = 117.8 ppm). The computed incremental shifts of the C-1; C-2,6; C-3,5 and C-4 carbons are -9.3; 6.3; 0.8 and 7.6, respectively. The incremental shifts due to the CH₃SO₂- group and those of the substituents (Table 13) were used to calculate the chemical shifts of the aromatic carbons in the N-(substituted phenyl)-methanesulphonamides, CH_3SO_2NHR , where $R = 4-XC_6H_4(X = CH_3)$, F, Cl, Br or NO₂), i-XC₆H₄(X = CH₃, Cl or NO₂ and i = 2 or 3) and $i, j-X_2C_6H_3(i, j-X_2 = 2,3-(CH_3)_2,$ 2,4-(CH₃)₂, 2,5-(CH₃)₂, 2,6-(CH₃)₂, 3,5-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂), by the methods 1 and 2, similar to the ones described under the ¹H NMR spectra. The various calculated chemical shifts, compared with the experimental chemical values, are shown in Tables 14 and 15. There is good agreement between the two sets of calculated values and the experimental chemical shifts.

Similarly, the incremental shifts of the aromatic carbons due to the CH_3SO_2NH - group in the compound $CH_3SO_2NH(C_6H_5)$ was calculated by comparing the chemical shifts of the carbons in this compound with that of the benzene carbon value of 128.4 ppm. The calculated values are C-1=8.5; C-2,6=-7.5;

Table 14. Calculated and observed chemical shifts (δ , ppm) of various aromatic carbons in N-(mono-substituted phenyl)-methanesulphonamides (CH₃SO₂NH(i-XC₆H₄)).

i-X			C-1					C-2					C-3		
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.
Н	_	_	-	_	136.9	_	-	-	-	120.9	-	_	_	-	129.6
$2-CH_3$	137.6	135.0	137.6	137.4	134.8	130.2	130.9	130.2	130.1	131.2	130.3	130.5	130.3	130.1	131.2
2-C1	137.1	133.4	137.1	137.1	133.4	127.3	124.9	127.3	126.8	126.2	129.8	129.8	129.8	129.8	129.6
$2-NO_2$	131.6	135.6	131.6	130.9	132.1	140.5	141.7	140.5	139.9	144.8	124.3	126.2	124.3	123.6	123.6
$3-CH_3$	136.8	137.1	136.8	136.6	136.8	121.6	121.9	121.6	121.4	121.4	138.9	139.4	138.9	138.8	139.7
3-C1	137.9	138.3	137.9	138.2	139.3	121.1	120.8	121.1	121.1	123.4	136.0	135.0	136.0	135.5	132.6
$3-NO_2$	137.8	139.5	137.8	137.2	139.5	115.6	114.3	115.6	114.9	113.3	149.2	149.7	149.2	148.6	148.3
$4-CH_3$	134.0	134.5	134.0	133.7	134.2	120.8	121.3	120.8	120.6	121.7	130.3	130.3	130.3	130.1	130.2
4-F	132.4	133.3	132.4	132.5	132.6	121.8	122.0	121.8	122.5	123.9	115.3	116.0	115.3	116.5	116.5
4-C1	134.9	135.6	134.9	134.9	136.5	121.9	122.4	121.9	122.2	121.5	129.8	129.7	129.8	129.8	129.1
4-Br	135.9	136.3	135.9	135.2	136.0	123.1	123.0	123.1	122.4	122.4	133.0	132.8	133.0	132.6	132.1
$4-NO_2$	142.9	145.1	142.9	142.6	126.4	121.8	118.7	121.8	121.2	125.8	124.3	126.7	124.3	123.6	113.5
i-X			C-4					C-5					C-6		
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.
H	_	-	_	_	125.4	_	_	_	_	129.6	_	_	-	_	120.9
2-CH ₃	125.3	125.3	125.3	125.1	126.2	126.7	127.0	126.7	126.4	127.1	120.8	120.6	120.8	120.6	123.4
2-C1	126.4	126.2	126.4	126.7	125.4	127.6	128.2	127.6	127.6	127.9	121.9	122.0	121.9	122.2	123.0
$2-NO_2$	126.3	126.3	126.3	125.7	126.2	135.6	136.2	135.6	135.3	135.6	121.8	122.6	121.8	121.2	119.3
3-CH ₃	126.1	126.6	126.1	125.9	126.1	129.5	129.6	129.5	129.3	129.4	118.0	118.3	118.0	117.7	117.8
3-C1	125.6	125.4	125.6	125.6	128.0	130.6	130.9	130.6	130.9	130.4	118.9	119.3	118.9	118.9	121.6
$3-NO_2$	120.1	118.7	120.1	119.4	117.9	130.5	130.2	130.5	129.9	130.0	126.9	126.6	126.9	126.6	125.0
$4-CH_3$	134.7	134.8	134.7	134.6	135.5	130.3	130.3	130.3	130.1	130.2	120.8	121.3	120.8	120.6	121.7
4-F	160.5	161.9	160.5	161.5	159.1	115.3	116.0	115.3	116.5	116.5	121.8	122.0	121.8	122.5	123.9
4-Cl	131.8	130.2	131.8	131.3	129.4	129.8	129.7	129.8	129.8	129.1	121.9	122.4	121.9	122.2	121.5
4-Br	120.0	117.7	120.0	119.4	121.6	133.0	132.8	133.0	132.6	132.8	123.1	123.0	123.1	122.4	132.0
$4-NO_2$	145.0	144.3	145.0	144.4	152.6	124.3	126.7	124.3	123.6	113.5	121.8	118.7	121.8	121.2	125.8

Table 15. Calculated and observed chemical shifts (δ , ppm) of various aromatic carbons in N-(di-substituted phenyl)-methanesulphonamides (CH₃SO₂NH(i, j-X₂C₆H₃)).

i, j - X_2	C-1					C-2					C-3					
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	
$2,3-(CH_3)_2$	137.5	135.0	137.5	138.0	134.4	130.9	131.8	130.9	128.8	131.4	139.6	137.2	139.6	137.5	138.4	
$2,4-(CH_3)_2$	134.7	132.5	134.7	134.5	136.4	130.1	128.1	130.1	130.0	131.9	131.0	131.5	131.0	131.0	132.0	
$2,5-(CH_3)_2$	137.7	134.9	137.7	137.3	137.1	127.3	125.1	127.3	127.0	127.7	130.2	130.7	130.2	130.0	131.0	
$2,6-(CH_3)_2$	138.3	137.2	138.3	138.3	137.5	130.1	130.8	130.1	130.0	132.9	127.4	128.3	127.4	127.2	128.9	
$3,5-(CH_3)_2$	136.9	137.5	136.9	136.6	136.7	118.7	119.6	118.7	118.5	118.5	138.8	139.5	138.8	138.7	139.6	
2,3-Cl ₂	138.1	135.1	138.1	138.9	135.4	127.5	125.3	127.5	124.9	126.8	136.2	133.2	136.2	133.6	133.7	
2,4-Cl ₂	135.1	132.4	135.1	135.1	132.4	128.3	125.8	128.3	127.4	128.6	130.0	129.7	130.0	129.7	129.6	
2,5-Cl ₂	138.1	134.4	138.1	138.3	134.7	125.3	124.8	125.3	125.0	122.6	130.8	130.7	130.8	131.0	130.6	
2,6-Cl ₂	137.3	137.6	137.3	137.0	137.5	128.3	129.8	128.3	127.4	131.5	127.8	129.8	127.8	127.8	129.2	
3,4-Cl ₂	135.9	136.8	135.9	136.1	130.8	122.1	122.6	122.1	122.9	116.5	136.2	133.3	136.2	133.6	131.3	
i, j - X_2			C-4					C-5					C-6			
	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	calc.1	calc.2	calc.3	calc.4	obs.	
$2,3-(CH_3)_2$	126.0	127.6	126.0	126.5	126.3	126.6	126.3	126.6	127.0	128.5	117.9	119.0	117.9	118.3	122.6	
$2,4-(CH_3)_2$	134.6	138.3	134.6	134.5	136.4	127.4	127.6	127.4	127.2	127.7	120.7	120.9	120.7	120.6	124.4	
$2,5-(CH_3)_2$	126.0	126.4	126.0	125.8	126.9	136.0	136.8	136.0	135.7	134.6	121.5	121.6	121.5	121.3	123.9	
$2,6-(CH_3)_2$	125.2	124.9	125.2	125.1	128.0	127.4	128.3	127.4	127.2	128.9	130.1	130.8	130.1	130.0	132.9	
$3,5-(CH_3)_2$	126.8	127.9	126.8	126.8	127.2	138.8	139.5	138.8	138.7	139.6	118.7	119.6	118.7	118.5	118.5	
2,3-Cl ₂	126.6	124.4	126.6	127.4	123.6	128.6	128.1	128.6	128.8	128.2	119.9	119.8	119.9	120.1	120.0	
2,4-Cl ₂	132.8	130.4	132.8	131.9	131.4	127.8	128.5	127.8	127.8	126.0	122.9	122.7	122.9	122.6	123.7	
	132.0	150.1	102.0	131.7												
2,5-Cl ₂	126.6	125.4	126.6	126.8	126.1	134.0	133.6	134.0	133.7	134.2	122.1	121.4	122.1	122.3	121.6	
									133.7 127.8	134.2 129.2	122.1 128.3	121.4 129.8	122.1 128.3		121.6 131.5	

C-3.5 = 1.2 and C-4 = -3.0. Then these incremental shifts due to the CH₃SO₂NH- group and of the substituents X (Table 13) were used to calculate the chemical shifts of the aromatic carbons in the N-(substituted phenyl)-methanesulphonamides, by two more methods similar to the ones described under ¹H NMR spectra (calc. 3 and calc. 4). In the method 3, the chemical shifts of aromatic carbons were computed by adding the incremental shifts due to the CH₃SO₂NHgroup and of the substituents X (Table 13) to the benzene carbon value of 128.4 ppm. In the other method (calc. 4), the chemical shifts of the aromatic carbons in all N-(substituted phenyl)-methanesulphonamides were computed by adding the incremental shifts due to the CH₃SO₂NH- group to the chemical shifts of the corresponding carbons in substituted benzenes (Table 12). The calculated chemical shifts by methods 3 and 4 are also shown in Tables 14 and 15.

- B.T. Gowda and D.S.Mahadevappa, Talanta 30, 359(1983); Microchem. J. 28, 374 (1983).
- [2] B. T. Gowda and D. S. Mahadevappa, J. Chem. Soc. Perkin Trans. 2, 323 (1983).
- [3] B. T. Gowda, B. S. Sherigara, and D. S. Mahadevappa, Microchem. J. 34, 103 (1986).
- [4] B.T. Gowda and J.I. Bhat, Tetrahedron. 43, 2119 (1987).
- [5] B. T. Gowda and R. V. Rao, J. Chem. Soc. Perkin Trans. 2, 355 (1988).
- [6] B. T. Gowda and B. S. Sherigara, Int. J. Chem. Kinet. 21, 31 (1989).
- [7] B. T. Gowda and P. Ramachandra, J. Chem. Soc. Perkin Trans. 2, 1067 (1989).
- [8] B. T. Gowda, J. D. D'Souza, and K. R. Bhat, J. Indian Chem. Soc. 78, 412 (2002).
- [9] B. T. Gowda, K. L. Jayalakshmi, and K. Jyothi, Z. Naturforsch. 58b, 787 (2003).
- [10] B. T. Gowda and B. H. A. Kumar, Oxidn. Commn. 26, 403 (2003).
- [11] M. Shetty and B. T. Gowda, Z. Naturforsch. 59b, 63 (2004).
- [12] B. T. Gowda and M. Shetty, J. Phys. Org. Chem. 17, xxx (2004)
- [13] B. T. Gowda, K. Jyothi, and J. D. D'Souza, Z. Naturforsch. 57a, 967 (2002).
- [14] B. T. Gowda, J. D. D'Souza, and B. H. A. Kumar, Z. Naturforsch. 58a, 51 (2003).

It is evident from the comparison of the 4 sets of calculated shifts that the different procedures of calculation lead to almost the same values in most cases, showing the validity of the principle of additivity of the substituent effects in the case of ¹³C chemical shifts. The correlation between the incremental shifts of either the aromatic protons or carbons due to the groups CH₃SO₂— and CH₃SO₂NH- with the corresponding Hammett substituent parameters was poor.

Acknowledgement

The Authors are grateful to the Nuclear Power Corporation India Limited (NPCIL), Govt. of India, Mumbai, for the Project Research Fellowship to KLJ, and thank the Sophisticated Analytical Instrumentation Facility, Punjab University, Chandigarh-160014, India, for the ¹H and ¹³C NMR spectral measurements.

- [15] B. T. Gowda and K. M. Usha, Z. Naturforsch. 58a, 351 (2003).
- [16] B. T. Gowda, K. Jyothi, and N. Damodara, Z. Naturforsch. 58a, 563 (2003).
- [17] B. T. Gowda, K. Jyothi, J. Kožšek, and H. Fuess, Z. Naturforsch. 58a, 656 (2003).
- [18] K. Jyothi and B. T. Gowda, Z. Naturforsch. 59a, 64 (2004).
- [19] B. T. Gowda, K. L. Jayalakshmi, and M. Shetty, Z. Naturforsch. 59a, 239 (2004).
- [20] K. Hanai, A. Noguchi, and T. Okuda, Spectrochim Acta. 34A, 771 (1978).
- [21] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds; John Wiley and Sons, New York 1991.
- [22] W. Kemp, Organic Spectroscopy, MacMillan, London 1996.
- [23] M. Goldstein, M. A. Russell, and H. A. Willis, Spectrochim Acta. 25A, 1275 (1969).
- [24] K. Hanai and T. Okuda, Spectrochim Acta. 31A, 1217 (1975).
- [25] D. E. Ewing, Org. Magn. Reson. 12, 499 (1979).
- [26] A. M. Hakkinen, P. Ruostesuo, and R. Kivekas, J. Chem. Soc. Perkin Trans. 2, 815 (1988).
- [27] R. Minkwitz, P. Garzarek, and H. Preut, Z. Naturforsch. 52b, 88 (1997).
- [28] E. Kolehmainen, H. Janota, R. Gawinecki, K. Laihia, and R. Kauppinen, Magn. Reson. Chem. 38, 384 (2000).